Что такое факторизация уравнения Шредингера? Представление его в виде f(x, y, z)*g(t) или что-то подобное, ну в смысле разделение на части от времени и координат, которые друг от друга не зависят? А координаты там простые или обобщенные, с квантовыми числами?
Только факторизация не уравнения, а его решения, т.е. волновой функции.
Факторизуется = "распадается на множители". Да, ты верно написал про f и g.
Я имел в виду "простые" координаты, без квантовых чисел (хотя при этом они могут быть и обобщенными, гы. Но не стоит в это вдаваться). Квантовые числа могут входить в оба множителя, вообще говоря.
Что означает слово "наблюдаемая"? Наблюдаемая величина?
Да, так называется для краткости. В теории могут содержаться любые костыли и контринтуитивные конструкции, главное, чтобы все было математически последовательно (даже непротиворечивость, вообще говоря, не является обязательной) и наблюдаемые (их средние значения) вели себя правильным образом. Именно средние значения наблюдаемых и предсказывает квантовая теория, и именно по ним теория проверяется. Именно о наблюдаемых имеет смысл говорить, обсуждая критерий Поппера и все из этой оперы. Наблюдаемые - единственный мостик между нашими ощущениями и теорией. Ну ты понел.
Стационарная квантовая система - это всякая, параметры которой не меняются со временем?
Не совсем. Во-первых, стационарна не система, а ее
состояние. Система может находиться во многих состояниях, некоторые из которых стационарны. Во-вторых, по определению, стационарное состояние - это состояние, в котором энергия системы имеет определенное значение. Если последнее тебе непонятно, говори - поясню.
потому что во всех наблюдаемых она сокращается со своим сопряженным
Тут у меня ошибка! Квантовая механика предсказывает не результат измерения наблюдаемой, а ее среднее значение. Один эксперимент ни о чем не говорит, нужна серия. И вот среднее значение любой наблюдаемой в стационарном состоянии от времени не зависит. Это важно.
Идем далее.
А откуда берется сопряженное, чтобы сокращалось?
Есть разработанный формализм (закладывается, собсно, в постулатах квантовой механики), в котором так получается автоматически. Если тебе интересны подробности: чтобы найти среднее значение <А>(t) наблюдаемой, описываемой оператором А(х), в состоянии, описываемом волновой функцией Ф(х,t), необходимо вычислить интеграл:
<А>(t) = интеграл (по всему пространству х) от [ Ф*(х,t) А(х) Ф(х,t) dx ]
где звездочка "*" обозначает комплексное сопряжение, а знаки умножения внутри квадратных скобок опущены. Как видно, экспонента exp(-iEt) из Ф встречает экспоненту exp(+iEt) из Ф*, давая единицу, и среднее значение <А>(t) получается не зависящим от времени t.
Ну вот я типа такой решаю уравнение Шредингера(именно его же надо решать, чтобы вычислить волновую функцию, да?), получаю... что? Одну функцию, семейство функций?
Да, ты решаешь уравнение Шредингера. Получаешь бесконечное количество возможных решений, причем, в силу однородности уравнения, сумма любых решений также будет являться решением. Выбрать из решений ты сам не можешь. Нужны доп. условия. Если ты ищешь основное состояние - низшее по энергии, - то оно будет стационарно. Переходишь к стационарному уравнению Шредингера (задача на собственные значения гамильтониана), находишь уровни энергии, находишь самые низшие - задача решена. Другие условия - будешь отбирать другие решения.
Вот, предположим, у нас есть ВФ произвольной квантовой системы, т.е. общий случай. Мы такие берем, подставляем туда координаты и время, получаем какое-то число - бац-бац, модуль-квадрат - получили вероятность состояния с данными координатами и в данный момент, да? А если теперь стационарная система, то у нас сразу действительное число и модуль можно не юзать?
Не совсем. Произвольная ВФ -> берем квадрат модуля -> подставляем координаты и время -> получаем плотность вероятности нахождения частицы в данной точке в данный момент времени. Если теперь система стационарна, то после взятия квадрата модуля зависимость от времени пропадает, и время подставлять тебе будет некуда, т.е. плотность вероятности от времени не зависит.
Ну-у-у... Вот плотность уже не совсем безразмерная, плотность - это как правило что-то на кубический сантиметр или типа того. Вот, к примеру, электронное облако в атоме - это ж по сути плотность вероятности нахождения электрона в данном месте, так? Тогда можно приписать этому облаку, к примеру, функцию плотности заряда, массы и даже любой величины, характеризующей электрон. Или это бессмысленное занятие?
Ты прав, я затупил. Давай заново. Вероятность - точно безразмерная, норма на единицу. Плотность - на единицу объема пространства. Стало быть, размерная. И амплитуда вероятности, следовательно, тоже.
Очевидно же. Хз, почему так написал. Мы же должны проинтегрировать плотность по пространству и получить безразмерную единицу, значит у плотности размерность обратна размерности объема.
И то, что я писал про квантование для разных наблюдаемых: все компенсируется тем, что там везде берется этот же интеграл, и "лишняя" размерность всегда сокращается.
Ну и вот, ты сам ответил на свой вопрос. Не можно, а нужно приписать волновой функции единицы измерения! (1 делить на размерность объема пространства, в котором мы работаем) в степени 1/2.
Допустим, мы рассчитываем освещенность экрана при дифракции света на щели. Это можно сделать при помощи классической электродинамики. И то же самое можно сделать с использованием квантовой механики. И есть подозрения, что ход решения в обоих случаях не просто будет похож, а почти один в один и формулы тоже по форме будут почти одни и те же. Только в одном случае к нас колебания вектора индукции, а во втором - какая-то нефизическая функция. Есть подозрения, что если не для всех, то хотя бы для некоторых стстем волновой функции можно придать некий физический смысл.
Я тебя понял, но с ходу чот не могу.
Честно говоря - не понимаю. Это надо для начала в гамильтоновом формализме разобраться хотя бы.
Я хотел сказать, что не было бы универсального постулата квантования для каждой наблюдаемой, что фигня. Но я сам ошибся, как писал выше. Гамильтонов формализм тут не особо важен.
Ну нет, как же? Мы же не можем непосредственно наблюдать очень многие вещи, в физичности которых нет никаких сомнений. Ну вот скажем нейтрино можно наблюдать только по взаимодействию их с другими частицами, или там спин электрона нельзя померить линейкой, или вот вообще сильное и слабое ядерное взаимодействие. А почему так нельзя сделать с волновой функцией?
Ты уводишь меня в философию) Давай разберемся. Наблюдать - это не значит "видеть глазом" или "мерить линейкой". Это значит "засекать прибором". Нейтрино (как и все элементарные частицы) существует потому, что оно взаимодействует с другими частицами, в том числе с нашим огромным и сложным измерительным прибором - детектором. Фотон ты засекаешь аналогично, только по взаимодействию не с таким громоздким прибором - глазом. Быть наблюдаемым - значит взаимодействовать!
Спин электрона - это характеристика, приписываемая частице. Ее не нужно мерить линейкой. Массу ты тоже не можешь померить линейкой - ее тоже не существует? Она меряется другими приборами (весами) за счет гравитационного взаимодействия. Спин электрона в каком-то роде тоже меряется так (из многих соображений, и для каждого случая нужна своя экспериментальная установка - прибор). Взаимодействием, которое позволяет тут провести измерение, является, например, спин-орбитальное взаимодействие, спин-спиновое, обменное взаимодействие (взять спина со статистикой).
Сильное и слабое взаимодействия - это вообще взаимодействия, их сами по себе нельзя померить, меряют их силу, вполне себе нормально.
С волновой функцией так сделать нельзя, потому что она опосредована в формализме от средних значений наблюдаемых, которые мы измеряем. Нет ни одной величины, которую мы можем померить, где бы была лишь волновая функция. Только квадрат ее модуля и только интеграл в комбинациях.
Порассуждай обратным образом: возьми хорошо тебе известный процесс, например, звуковые волны. Введи в его описание какую-то фиктивную величину, комплексную или корень из чего-то. Перепиши всю свою теорию с помощью этой величины. Но ты уже с самого начала знаешь, что к физике она имеет мало отношения, не так ли? Почему мы должны утверждать, что она является физической сущностью? Вот так и в квантовой механике, только она изначально построена так, что там нет заведомо "хорошего" описания изначально через физические сущности, нужно вводить "фантомы" вроде ВФ.
А что, если на самом деле нельзя придумать какой-то совсем другой формализм?
Это дискуссионный вопрос. Была теорема (доказанная!), что для теорий типа квантовой механики можно придумать бесконечное количество эквивалентных описаний. И их придумывают, почему нет. Только смысла в этом мало, проще не выходит, видимо.
Это я к тому, что если что-то очень хорошо согласуется с реальность, то очень сомнительно, что у этого чего-то нет под собой какой-то материальной основы.
Нужно просто меру знать. Все эти теории нерабочие, например, без понятия числа. Можно бы сказать, что число тоже есть физическая наблюдаемая сущность. Но число ты не меряешь, ты меряешь количество яблок/отсчетов счетчика/... Так и с ВФ - она позволяет тебе получить значение, которое потом можно будет померить. Причем ты пихаешь ВФ в выражения с разными наблюдаемыми и получаешь ответ для конкретной наблюдаемой. Таким образом, оператор наблюдаемой задает тебе то, что ты меряешь, а ВФ - что может получиться в результате измерения. Саму ВФ ты не меряешь.
Razum писал(а):
Разложение волновой функции в ряд Фурье по времени или использование интегрального преобразования Фурье вроде как изучаются в квантмехе. Если мы разложим или преобразуем функцию некоторой системы, то получившиеся функции будут функциями чего?
Не понял вопрос...
Пусть есть функция Ф(t). Разложили ее в интеграл Фурье, под интегралом будет какая-то функция F(r) от какого-то r, а зависимость от t уйдет в экспоненту под этим же интегралом. Ты об этом?